ME4822 Guidance, Navigation, and Control of Marine Systems
The objective is to present a classical approach to the robust design of nonlinear GNC systems that accounts for both the stability and performance specifications. The course is built around the task of designing a robust autopilot for a typical robotic UxV platform; the class will be given an option of choosing the platform of interest. The robust autopilot integrates all parts of the GNC design process into one complete task. Development of the mathematical modeling skills is supported by intensive introduction to the advanced capabilities of MatLab/Simulink, therefore some prior familiarity with them are required. Students are asked to choose an autonomous system, model its dynamics in a nonlinear simulation package such as SIMULINK, define the uncertainty of the mathematical model, and then design a robust autopilot for this system. The design is to be tested on SIMULINK or a similar numerical computational platform integrated with a high-fidelity 6DOF motion dynamics engine; UAV class is supported by CONDOR simulator. Course notes and labs cover all the relevant material.
Prerequisite
ME3205 and
ME2801 or equivalent or by consent of instructor
Lecture Hours
3
Lab Hours
2