Introduction to interdisciplinary, case-based approaches to problem-solving. Demonstrates how important, current problems in environmental and human health have been addressed and solved. Presents assigned problems that integrate the different organization levels (environmental, molecular/cellular, organismal/public health) inherent to environmental and human health. Students work in collaborative teams to analyze each problem and create a proposal for a research plan/solution. This course must be taken for a letter grade.
Presents a framework for scientific writing related to developing a thesis research proposal in a topical area of microbiology and/or environmental toxicology.
Presents in-depth important principles of environmental toxicology related to the introduction, transport, and fate of toxicants in aquatic and terrestrial environments including environmental chemistry and biogeochemical cycles as well as exposure pathways and uptake by organisms. Additional emphasis will be placed on the susceptibility and effects of toxicants across organ systems, toxicokinetics and biomarkers of exposure, and effects at the ecosystem level. Students cannot receive credit for this course and METX 101.
Emphasizes biochemical, cellular, and organ system basis of intoxication, including dose-response relationships, biotransformation of toxicants, biochemical mechanisms underlying toxicity, factors influencing toxic action, and biomarkers of exposure. Emphasizes effects of various classes of toxins, including heavy metals and persistent synthetic organics, with a focus on susceptible biochemical/cellular processes of the central nervous, immune, hepatic, and renal target organ systems. Students cannot receive credit for this course and
METX 102 or BIOL 122.
Instructor
David Smith, Chad Saltikov, Raquel Chamorro-Garcia
Presents in-depth cellular and molecular principles of environmental toxicology. These include modes of action and cellular and molecular targets of toxicants, as well as mechanisms of cellular and molecular responses to toxicants and their detoxification. State-of-the-art biological methodologies and approaches to identify and study cellular targets of toxicants. Designed to provide students with a broad and deep understanding of the biological aspects of toxicology at both cellular and molecular levels, and the skills to approach emerging challenges in the field.
Provides fundamental training of graduate students in the scientific method; experimental design; ethics in science; grant proposal and scientific writing; and data presentation and scientific speaking. Students are evaluated on class participation, performance, and a written NIH/NSF-style research proposal. (Formerly Scientific Skills, Ethics, and Writing.)
Focuses on aspects of bacterial molecular biology. Covers four main areas: (1) metabolism-catabolism, anabolism, building-block precursors; (2) transcription/signal transduction; (3) replication/plasmid biology/division; (4) translation/protein processing/secretion/cell structure. Strong focus on experimental techniques and approaches used in molecular biology, and on model bacteria, such as Escherichia coli and Bacillus subtilis.
Instructor
Manel Camps, Karen Ottemann, Chad Saltikov, Victoria Stone
Focuses on the molecular basis of bacterial pathogenesis with specific emphasis on gene expression, regulation, and ecology and evolution.
Instructor
Fitnat Yildiz, Victoria Auerbuch Stone, Jaqueline Kimmey, Michael Patnode
Critical review of scientific literature covering genetic and physiological mechanisms conferring resistance to antibiotics and their spread in the population. Format based on structured discussion of selected topics and original research proposal.
Instructor
Fitnat Yildiz, Manel Camps
Provides an overview of the mammalian innate immune response and the role of inflammation in disease. Also, presents how both environmental stressors and microbial pathogens impact inflammation.
Instructor
Donald Smith, Manel Camps, Victoria Stone
Focuses on several aspects of prokaryotic molecular biology. Covers transcriptional regulation, translational regulation, DNA replication and segregation, protein secretion, transport of small molecules, control of metabolism, stress response, bacterial differentiation, signal transduction, biofilm formation, and motility. Strong focus on experimental techniques and approaches used in prokaryotic molecular biology. Focus on model bacteria such as Escherichia coli and Bacillus subtilis.Students cannot receive credit for this course and METX 140.
Instructor
Karen Ottemann
Introduces multiple forms of scientific presentation and communication to graduate students. Students learn to craft and deliver multiple types of written and visual communications, including formal and informal modes, on a topic developed as part of the class.
Instructor
Karen Ottemann, Don Smith
Continuation of
METX 245A. Students develop and refine a capstone in-depth report in a written form and as an oral presentation.
Instructor
Karen Ottemann, Don Smith
How microbes interact with their environments. Topics include anaerobic metabolism; biotransformation of toxic metals and organic pollutants; geomicrobiology; life in extreme environments; water quality. Advanced undergraduates with extensive background in microbiology and biology may enroll with permission of instructor.
Selected topics in environmental toxicology. Topics vary from year to year.
Seminar and discussion focusing on mechanism of microbial transformation of metals. Participants present results from their research projects in a seminar format. Relevant journal articles presented and discussed.
Quarter offered
Fall, Winter, Spring
Research seminar focusing on the mechanisms underlying host resistance or susceptibility to infectious diseases, and virulence strategies utilized by bacterial pathogens. Participants are required to present results from their own research and relevant journal articles.
Quarter offered
Fall, Winter, Spring
Seminar and discussion on the mechanisms of toxicity in DNA alkylating agents. Participants present results from their research, and relevant journal articles are discussed.
Quarter offered
Fall, Winter, Spring
Intensive seminar focusing on mechanisms of bacterial pathogenesis of the ulcer-causing bacterium Helicobacter pylori. Participants are required to present results from their own research and relevant journal articles.
Instructor
Karen Ottemann
Research seminar focusing on how beneficial and harmful bacterial species living in the human intestine compete with one another for nutrients in food, and how our immune systems influence the outcomes of these competitions. Emphasis is placed on the evolution of relationships between organisms. Discussion will include genetic, biochemical, bioinformatic, and immunological methods for advancing knowledge about the impacts of microbes on host health. Participants are required to present results from their own research, analyze current literature, and develop future aims for their studies. All lab members of the Patnode Lab are required to take this course.
Instructor
Michael Patnode
Quarter offered
Fall, Winter, Spring
Intensive research seminar focusing on the effects of exposure to environmental agents and multigenerational epigenetic inheritance of disease. Participants are required to present results from their own research and relevant journal articles.
Quarter offered
Fall, Winter, Spring
Intensive research seminar on the concepts, theory, and techniques in deriving physiologically based pharmacokinetic models of toxin exposure, metabolism, and efficacy of therapeutic treatment in mammalian models of human metal toxicity.
Quarter offered
Fall, Winter, Spring
Focuses on the interplay between the human gut bacterial pathogen Yersinia pseudotuberculosis and the innate immune system of the host. Participants are required to present the goals, results, and conclusions from their own research. Participation in the general discussion during others' presentations is also required.
Instructor
Victoria Stone
Quarter offered
Fall, Winter, Spring
Intensive seminar series focusing on the most current work on genes and the processes that regulate biofilm development dynamics as well as on the recent developments on visualization of biofilms. Presentation and discussion based.
Quarter offered
Fall, Winter, Spring
Graduate level seminar focusing on the mechanisms by which bacterial pathogens cause disease. Specific topics include basic concepts of virulence and virulence factors, virulence factor regulation, toxins, and interactions of pathogens with mammalian cells and organs. Discussions focus on several key pathogens, including Helicobacter pylori, Vibrio cholerae, Salmonella typhimuruim, and Listeria monocytogenes.
Instructor
Karen Ottemann
Special topics offered from time to time by faculty, visiting professors, or staff members.
Approaches different techniques of biological monitoring and the exposure and effect of biomarkers related to occupational and environmental exposure to chemicals. Available methods for risk assessment and identification of protective exposure limits also considered.
Weekly seminars by academic and research faculty on their areas of special interest. Students write weekly abstracts on articles covered by the seminars. This course can be taken for Satisfactory/Unsatisfactory credit only.
Quarter offered
Fall, Winter, Spring
Independent study for graduate students who have not yet settled on a research area for the thesis. Students submit petition to sponsoring agency.
Independent study for graduate students who have not yet settled on a research area for the thesis. Students submit petition to sponsoring agency.
Independent study for graduate students who have not yet settled on a research area for the thesis. Students submit petition to sponsoring agency.
Students submit petition to sponsoring agency.
Students submit petition to sponsoring agency.
Students submit petition to sponsoring agency.