Lower-Division

ASTR 1 Introduction to the Cosmos

Overview of the main ideas in our current view of the universe and how these ideas originated. Galaxies, quasars, stars, black holes, and planets. Students cannot receive credit for this course after receiving credit for ASTR 2.

Credits

5

Instructor

Alexie Leathaud

General Education Code

SI

Quarter offered

Summer

ASTR 2 Overview of the Universe

An overview of the main ideas in our current view of the universe, and how they originated. Galaxies, quasars, stars, pulsars, and planets. Intended primarily for nonscience majors interested in a one-quarter survey of classical and modern astronomy. Students cannot receive credit for for ASTR 1 after receiving credit for ASTR 2.

Credits

5

Instructor

Kevin Bundy

General Education Code

MF

Quarter offered

Summer

ASTR 3 Introductory Astronomy: Planetary Systems

Properties of the solar system and other planetary systems. Topics include the Sun, solar system exploration, the physical nature of the Earth and the other planets, comets and asteroids, the origin of the solar system, the possibility of life on other worlds, planet formation, and the discovery and characterization of planets beyond the solar system. Intended for nonscience majors. ASTR 3, ASTR 4, and ASTR 5 are independent and may be taken separately or sequentially.

Credits

5

Instructor

Rebecca Jensen-Clem, Ruth Murray-Clay

General Education Code

MF

ASTR 4 Introductory Astronomy: The Stars

Stellar evolution: observed properties of stars, internal structure of stars, stages of a star's life including stellar births, white dwarfs, supernovae, pulsars, neutron stars, and black holes. Planet and constellation identification. Intended for nonscience majors. ASTR 3, ASTR 4, and ASTR 5 are independent and may be taken separately or sequentially.

Credits

5

Instructor

Constance Rockosi

General Education Code

MF

ASTR 5 Introductory Astronomy: The Formation and Evolution of the Universe

The universe explained. Fundamental concepts of modern cosmology (Big Bang, dark matter, curved space, black holes, star and galaxy formation), the basic physics underlying them, and their scientific development. Intended for non-science majors. ASTR 3ASTR 4, and ASTR 5 are independent and may be taken separately.

Credits

5

Instructor

Ryan Foley

General Education Code

MF

Quarter offered

Winter

ASTR 6 The Space-Age Solar System

Scientific study of the Moon, Earth, Mercury, Venus, and Mars by the space program; history of rocket development; the Apollo program and exploration of the Moon; unmanned spacecraft studies of the terrestrial planets; scientific theories of planetary surfaces and atmospheres. Intended for nonscience majors.

Credits

5

Instructor

Graeme Smith

General Education Code

SI

Quarter offered

Fall

ASTR 7 Black Holes

Examines the nature of black holes, including their creation and evolution; evidence for their existence from astronomical observations; and the role of black holes in the evolution of the universe. Also examines current ideas about the nature of space, time, and gravity.

Credits

5

General Education Code

MF

ASTR 8 Exploring the Universe with Astronomical Data

Introduces how we use observational data to learn about stars, galaxies, planets, and cosmology. Covers astronomical data and experimental design and basic physics and statistical techniques, such as model fitting, regression, significance tests, and error estimation.

Credits

5

Instructor

Constance Rockosi, Jonathan Fortney

General Education Code

SR

ASTR 9A Introduction to Research in Physics and Astrophysics

Introduction to research for first-year students interested in physics and astrophysics. Students complete projects in small groups with scientists. Introduces techniques for collaboration; science writing; physics careers. Continuing course spanning two quarters. Enrollment is restricted to first-year proposed astrophysics and physics majors and by permission of the instructor.

Credits

2

Cross Listed Courses

PHYS 9A

Instructor

Ruth Murray-Clay, Jonathan Fortney

ASTR 9B Introduction to Research in Physics and Astrophysics

Introduction to research for first-year students interested in physics and astrophysics. Students complete projects in small groups with scientists. Introduces techniques for collaboration; science writing; physics careers. Continuing course spanning two quarters. Prerequisite(s): ASTR 9A. Enrollment is restricted to first-year proposed applied physics, physics, and physics (astrophysics) majors and by permission of the instructor.

Credits

3

Cross Listed Courses

PHYS 9B

General Education Code

PR-E

ASTR 10 From the Big Bang to Planet Earth

Broad scientific overview of the universe, from the Big Bang to planet Earth. Origin and content: Big Bang, dark matter, dark energy, galaxies, black holes, star systems, exoplanets. Solar system and properties of Earth in relation to other planets. Physics of planetary atmospheres and impact of human activity on Earth's climate. Possibility of terraforming and of life beyond the solar system. Fate of Earth, the solar system, and the universe. Active learning class with continuous assessment. Intended for non-science majors. No previous college-level math, physics, or astronomy required.

Credits

5

Instructor

Alexie Leauthaud

Repeatable for credit

Yes

General Education Code

SI

Quarter offered

Winter

ASTR 12 Stars and Stellar Evolution

An introduction to the observational facts and physical theory pertaining to stars. Topics include the observed properties of stars and the physics underlying those properties; stellar atmospheres; stellar structure and evolution. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.

Credits

5

Instructor

Ryan Foley

General Education Code

MF

ASTR 13 Galaxies, Cosmology, and High Energy Astrophysics

Introduction to modern cosmology and extragalactic astronomy. Topics include the origin of the universe, Big Bang cosmology, expansion of the universe, dark matter and dark energy, properties of galaxies and active galactic nuclei, and very energetic phenomena in our own and other galaxies. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.

Credits

5

General Education Code

MF

ASTR 15 Dead Stars and Black Holes

Course is primarily concerned with the structure, formation, and astrophysical manifestations of compact objects, such as white dwarfs, neutron stars, and black holes, and the astronomical evidence for their existence. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.

Credits

5

Instructor

Enrico Ramirez-Ruiz

General Education Code

MF

ASTR 16 Astrobiology: Life in the Universe

Topics include the detection of extrasolar planets, planet formation, stellar evolution and properties of Mars, the exploration of our solar system and the search for life within it, and the evolution of life on Earth. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.

Credits

5

Instructor

Natalie Batalha

General Education Code

MF

Quarter offered

Fall

ASTR 18 Planets and Planetary Systems

Our solar system and newly discovered planetary systems. Formation and structure of planets, moons, rings, asteroids, comets. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.

Credits

5

General Education Code

MF

ASTR 19 Practical Programming for the Sciences

Introduces how we use computer programming to solve scientific problems. Covers basic Python programming, code repositories, and scientific plotting and graphing. Introduces more advanced techniques through small projects featuring real data from throughout the sciences, with a focus on using programming to evaluate the statistical significance of scientific claims.

Credits

5

Instructor

Brant Robertson, The Staff , The Staff

General Education Code

SR

Quarter offered

Fall, Winter, Spring

ASTR 21 The Diverse Universe: Stars, Planets, and Galaxies

Introductory course for students pursuing the astrophysics major (or who have a similar physics/math background). Course introduces students to current topics and research in a astronomy and astrophysics, and gives students the background necessary for success in the 100-level Astrophysics laboratory classes (PHYS 135 or ASTR 136). Class focuses on three central types of objects in modern astronomy: stars, planets, and galaxies, building off of our nearest examples, the Sun, solar system planets, and the Milky Way. The class differs from GE classes like ASTR 2 in that a higher level of math and physics experience is assumed.

Credits

5

Instructor

Jonathan Fortney, Raja Guhathakuta, Graeme Smith

Requirements

Prerequisite(s): PHYS 5A.

Quarter offered

Winter, Spring

Cross-listed courses that are managed by another department are listed at the bottom.

Cross-listed Courses

PHYS 130 Multiwavelength Astronomical Techniques

Survey of observational astronomy across the electromagnetic spectrum and including multi-messenger probes. Covers the physics of light detection and instrumentation in different wavelength bands as well as astrophysical sources of emission and the relevant radiative processes associated to them. Aspects of statistics and statistical inference relevant for astronomical data analysis are also covered.

Credits

5

Cross Listed Courses

ASTR 114

Instructor

The Staff

Requirements

Prerequisite(s): PHYS 102; and PHYS 133; and either ASTR 19 or ASTR 119 or CSE 20.

Quarter offered

Spring

PHYS 135 Astrophysics Advanced Laboratory

Introduction to the techniques of modern observational astrophysics at optical and radio wavelengths through hands-on experiments. Offered in some academic years as a multiple-term course: PHYS 135A in fall and PHYS 135B in winter, depending on astronomical conditions.

Credits

5

Cross Listed Courses

ASTR 135

Instructor

Tesla Jeltema

Requirements

Prerequisite(s): PHYS 133 and at least one astronomy course. Enrollment is restricted to physics (astrophysics) majors. Intended primarily for juniors and seniors majoring or minoring in astrophysics.

Quarter offered

Fall, Spring

PHYS 135A Astrophysics Advanced Laboratory

Introduction to techniques of modern observational astrophysics at optical and radio wavelengths through hands-on experiments. Intended primarily for juniors and seniors majoring or minoring in astrophysics. Offered in some academic years as single-term course PHYS 135 in fall, depending on astronomical conditions.

Credits

3

Cross Listed Courses

ASTR 135A

Instructor

Tesla Jeltema

Requirements

Prerequisite(s): PHYS 133 and at least one astronomy course. Enrollment is restricted to physics (astrophysics) majors.

PHYS 135B Astrophysics Advanced Laboratory

Introduction to techniques of modern observational astrophysics at optical and radio wavelengths through hands-on experiments. Intended primarily for juniors and seniors majoring or minoring in astrophysics. Offered in some academic years as single-term PHYS 135 in fall, depending on astronomical conditions.

Credits

2

Cross Listed Courses

ASTR 135B

Requirements

Prerequisite(s): PHYS 135A. Enrollment is restricted to physics (astrophysics) majors.

PHYS 171 General Relativity, Black Holes, and Cosmology

Special relativity is reviewed. Curved space-time, including the metric and geodesics, are illustrated with simple examples. The Einstein equations are solved for cases of high symmetry. Black-hole physics and cosmology are discussed, including recent developments.

Credits

5

Cross Listed Courses

ASTR 171

Instructor

Wolfgang Altmannshofer

Requirements

Prerequisite(s): PHYS 105, PHYS 110A, and PHYS 110B; and PHYS 116A or MATH 21 and MATH 24.

Quarter offered

Spring

PHYS 224 Particle Astrophysics and Cosmology

Particle physics and cosmology of the very early universe: thermodynamics and thermal history; out-of-equilibrium phenomena (e.g., WIMPs freeze-out, neutrino cosmology, Big Bang nucleosynthesis, recombination); baryogenesis; inflation; topological defects. High-energy astrophysical processes: overview of cosmic ray and gamma ray astrophysics; radiative and inelastic processes; astroparticle acceleration mechanisms; magnetic fields and cosmic ray transport; radiation-energy density of the universe; ultrahigh-energy cosmic rays; dark-matter models; and detection techniques.

Credits

5

Cross Listed Courses

ASTR 224

Instructor

Anthony Aguirre

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS 226 General Relativity

Develops the formalism of Einstein's general relativity, including solar system tests, gravitational waves, cosmology, and black holes.

Credits

5

Cross Listed Courses

ASTR 226

Instructor

Anthony Aguirre

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.