An introduction to biochemistry including biochemical molecules, protein structure and function, membranes, bioenergetics, and regulation of biosynthesis. Provides students with basic essentials of modern biochemistry and the background needed for upper-division biology courses. Students who plan to do advanced work in biochemistry and molecular biology should take the Biochemistry and Molecular Biology 100 series directly. Students cannot receive credit for this course after they have completed any two courses from the BIOC 100A, BIOC 100B, and BIOC 100C sequence.
Instructor
Douglas Kellogg, Jeremy Sanford
Quarter offered
Winter, Spring
Basic techniques and principles of laboratory biochemistry including isolation and characterization of a natural product, manipulation of proteins and nucleic acids to demonstrate basic physical and chemical properties; and characterization of enzyme substrate interactions. Students are billed a materials fee.
Covers the basic molecular mechanism of DNA replication and transcription, protein synthesis, and gene regulation in bacterial and eukaryotic organisms. The experimental techniques used to determine these mechanisms are emphasized. Unless students have already passed BIOL 20L, they are strongly encouraged to enroll in BIOL 101L.
Instructor
Jordan Ward, Christopher Vollmers
Quarter offered
Fall, Spring
Laboratory course providing hands-on experience with, and covering conceptual background in, fundamental techniques in molecular biology and biochemistry, including DNA cloning, PCR, restriction digest, gel electrophoresis, protein isolation, protein quantification, protein immunoblot (Western) analysis, and use of online bioinformatics tools. Students are billed a materials fee.
Quarter offered
Fall, Winter, Spring, Summer
Introduction to hypothesis-driven laboratory research. Students will create models of a unique uncharacterized disease causing mutation using site directed mutagenesis. An understanding of introductory molecular biology and genetics required. Students are billed a materials fee. Prerequisite(s): BIOL 20A. Enrollment restricted to biological sciences and affiliated majors with sophomore standing or higher. Enrollment by application and permission of instructor.
Instructor
Jeremy Sanford
Introduces hypothesis-driven laboratory research. Students create models of a unique uncharacterized disease causing mutation and determine how it impacts the process of pre-mRNA splicing. An understanding of introductory molecular biology and genetics is required. Students are billed a materials fee. Prerequisite(s): BIOL 20A; and BIOL 20L or BIOL 102J. Enrollment is restricted to sophomore, junior, and senior biological sciences and affiliated majors. Enrollment is by application and permission of the instructor.
Instructor
Jeremy Sanford
General Education Code
PR-E
Introduces hypothesis-driven laboratory research. Students create models of a unique, uncharacterized, disease-causing mutation and determine how it impacts the process of pre-mRNA splicing. An understanding of introductory molecular biology and genetics is required. Prerequisite(s): BIOL 102J and BIOL 102L and satisfaction of the Entry Level Writing and Composition is requirements. Enrollment is restricted to sophomores, juniors, and seniors majoring in biology, molecular, cell, and developmental biology, neuroscience, human biology, and biochemistry and molecular biology. Enrollment is by application and permission of the instructor.
Instructor
Jeremy Sanford
The overall objective of this lab is to apply bioinformatic tools to analyze the structure, function, and evolution of SARS-CoV-2 (the virus responsible for the COVID-19 pandemic). Students experience using web-based tools to retrieve and annotate genetic sequences, align sequences from related species, perform phylogenetic analyses, design sequence-based diagnostic protocols, and perform three-dimensional protein structure analyses.
Mendelian and molecular genetics; mechanisms of heredity, mutation, recombination, and gene action.
Instructor
Susan Strome, Jeremy Lee, Needhi Bhalla
Quarter offered
Fall, Winter, Spring, Summer
Classical and newly developed molecular-genetic techniques used to explore genetic variation in wild populations of the fruit fly Drosophila melanogaster. Topics include Mendelian fundamentals, mapping, design of genetic screens, bio-informatic and database analysis, genetic enhancers, and population genetics. Students are billed a materials fee. Enrollment is restricted to biological sciences and affiliated majors; biology minors; non-majors by instructor permission.
Quarter offered
Fall, Spring
Lab course focusing on teaching students specific molecular genetic methods such as Phenotype analysis, Cloning, PCR, Expression analysis, CRISPR/Cas9-based Gene insertions, Protein Blots, etc., for the genetic manipulation of model organisms. Students are billed a materials fee.
Instructor
Rohinton Kamakaka
Using budding yeast as an experimental organism, this laboratory provides practical experience in classic and modern molecular biology and in genetic and epigenetic methods, and develops strong scientific communication skills. Topics include mendelian genetics, linkage, gene replacement, chromatin immunoprecipitation and epigenetics. Students are billed a materials fee.
Quarter offered
Fall, Winter, Spring
Covers the structure, organization, and function of eukaryotic cells. Topics include biological membranes, organelles, protein and vesicular trafficking, cellular interactions, the cytoskeleton, and signal transduction. Requires a good understanding of basic biochemistry and molecular biology.
Instructor
Lindsay Hinck, Zhu Wang
Quarter offered
Fall, Winter
Immune systems--their manifestations and mechanisms of action.
Principles and concepts of the innate and adaptive immune systems, with emphasis on mechanisms of action and molecular and cellular networks. The development, differentiation, and maturation of cells of the immune system are also discussed.
Instructor
Susan Carpenter
The immune system in health and disease, including failures of host immune-defense mechanisms, allergy and hypersensitivity, autoimmunity, transplantation biology, the immune response to tumors, immune-system interactions with pathogens, and manipulation of the immune response.
Principles of virology illustrated through study of specific examples. Topics include: viral genome organization, viral assembly, virus-host interactions, genetic diversity of viruses, viral ecology, and the epidemiology of viral diseases. Prerequisite(s): BIOL 101 and BIOL 110 and consent of instructor.
Focuses on the molecular and cellular mechanisms behind cancer. Topics covered include oncogenes, tumor suppressor genes, cell growth genes, checkpoint genes, telomeres, and apoptosis. Students will gain experience in reading the primary scientific literature.
General Education Code
TA
Covers eukaryotic gene and genome organization; DNA, RNA, and protein synthesis; regulation of gene expression; chromosome structure and organization; and the application of recombinant DNA technology to the study of these topics.
A laboratory designed to provide students with direct training in basic molecular techniques. Each laboratory is a separate module which together builds to allow cloning, isolation, and identification of a nucleic acid sequence from scratch. Students cannot receive credit for this course and BIOL 187L or BIOL 287L. Students are billed a materials fee.
Quarter offered
Winter, Spring
Advanced course in cell biology featuring small-classroom discussion of topics related to the structure and function of cells and their organelles. Emphasis is given to experimental strategies used in cell biology research. Requires discussion of scientific literature and student-led presentations.
Neglected tropical diseases afflict more than 1 billion of the poorest individuals on the planet. Course covers the molecular basis and pathology of the most prevalent neglected diseases and emerging strategies to combat these diseases.
Instructor
William Sullivan
Overview of human and medical genetics covering the molecular basis of genetic disease, quantitative methodologies utilized in calculation of genetic risk, and genetic testing and counseling. Includes discussion of ethical issues in genetics and genomic medicine.
A description and analysis of selected developmental events in the life cycle of animals. Experimental approaches to understanding mechanisms are emphasized.
Experimental studies of animal development using a variety of locally obtainable organisms. Approximately eight hours weekly, but it will often be necessary to monitor continuing experiments throughout the week. Students are billed a materials fee.
Introduction to hypothesis-driven laboratory research. Students isolate a unique bacteriophage and characterize its structure and genome. An understanding of molecular biology and basic genetics is required. Students are billed a materials fee. Prerequisite(s): BIOL 100 or BIOC 100A; and BIOL 101L or BIOL 102L; satisfaction of the Entry Level Writing and Composition requirements. Enrollment is restricted to biological sciences and affiliated majors with sophomore standing or higher. Enrollment is by application and permission of instructor.
Covers the theory and application of light microscopy in a non-mathematical way. Course starts with basic optics, introduces the working principles of various microscopes, and discusses recent innovations in imaging techniques with an emphasis on neuroscience applications.
The structure and function of the nervous system. Topics include elementary electrical principles, biophysics and physiology of single nerve and muscle cells, signal transduction at synapses, development of the nervous system, and neural basis of behavior. Requires a good understanding of basic biochemistry, cell biology, and molecular biology.
Quarter offered
Fall, Winter
Explores in detail cellular and molecular events that underlay the function of the nervous system. Topics include neural development, axon guidance and regeneration, advanced electrical principles (synaptic transmission through a variety of receptors), synaptic plasticity, learning and memory, as well as several neural disorders. Students cannot receive credit for this course and BIOL 226.
Instructor
David Feldheim, Yi Zuo
General Education Code
TA
Focuses on cellular and molecular processes that underlie neurodegenerative diseases. Includes lectures, student oral presentations, discussions, a term paper, and exams.
Instructor
William Saxton
General Education Code
TA
Covers the principles of nervous-system development from the molecular control of development, cell-cell interactions, to the role of experience in influencing brain structure and function. Students cannot receive credit for this course and BIOL 228.
Function, organization, and regulation of the major organ systems of humans, with emphasis on integration among systems. Students cannot receive credit for this course and BIOE 131.
Quarter offered
Winter, Spring
Examines fundamental principles of systemic physiology focusing on the human. Students cannot receive credit for this course and BIOE 131L. Students are billed a materials fee.
Quarter offered
Winter, Spring
This active-learning course explores the origins, evolution, and functions of ribonucleic acid (RNA), including ribozymes, ribosomes, IRNAs, spliceosomes, riboswitches, messenger RNA, microRNAs, snRNAs, snoRNAs, and other guide RNAs, CRISPR, long noncoding RNAs, retrotransposons, and RNA viruses.
Supervised undergraduate research in laboratory of an MCD biology faculty member accompanied by weekly lectures on ethical and practical scientific issues. Topics include: laboratory safety; the scientific method; the collection, treatment, and presentation of data; critical evaluation of scientific literature; scientific misconduct; and peer review. Career issues, including how to apply for admission to graduate and professional schools, are also discussed. Prerequisite(s): BIOL 100 or BIOC 100A; and BIOL 20L or BIOL 102J; and previous completion of the Disciplinary Communication requirement. Each enrolled student must have a committed MCD faculty sponsor by the first class meeting. Enrollment is restricted to biology and affiliated majors.
Quarter offered
Fall, Winter, Spring
Supervised undergraduate research in laboratory of an MCD biology faculty member accompanied by weekly lectures on ethical and practical scientific issues. Topics include: laboratory safety; the scientific method; the collection, treatment, and presentation of data; critical evaluation of scientific literature; scientific misconduct; and peer review. Career issues, including how to apply for admission to graduate and professional schools, are also discussed. Prerequisite(s): Entry Level Writing and Composition requirements; BIOL 100 or BIOC 100A; and BIOL 20L or BIOL 102J. Each enrolled student must have a committed MCD faculty sponsor by the first class meeting. Enrollment is restricted to biology and affiliated majors.
Quarter offered
Fall, Winter, Spring
Supervised undergraduate research in the laboratory of an MCD biology faculty member accompanied by weekly lectures on practical scientific issues. Topics include: laboratory safety; the scientific method; the collection, treatment, and presentation of data; critical evaluation of scientific literature; ethics and scientific misconduct; and peer review. Career issues, including how to apply for admission to graduate and professional schools, are discussed. Students cannot receive credit for this course and course 186L. Prerequisite(s): BIOL 100 or BIOC 100A; and BIOL 20L or BIOL 102J; and previous completion of the Disciplinary Communication requirement. Each enrolled student must have a committed MCD faculty sponsor by the first class. Enrollment is restricted to MCD Biology-affiliated majors.
Quarter offered
Fall, Winter, Spring
Students explore healthcare from the perspectives of both clinicians and patients. The class focuses on medicine's cognitive, emotional, and spiritual elements, with the goal of understanding the rewards and costs of healthcare practice.
General Education Code
PR-E
Quarter offered
Fall, Spring
Structured off-campus learning experience providing experience and pre-professional mentoring in a variety of health-related settings. Interns are trained and supervised by a professional at their placement and receive academic guidance from their faculty sponsor. Students spend 8 hours per week at their placement, participate in required class meetings on campus, and keep a reflective journal. Enrollment is by application. Students interview with health sciences internship coordinator; applications are due one quarter in advance to the Health Sciences Internship Office. Prerequisite(s): satisfaction of the Entry Level Writing and Composition requirements; previous or concurrent enrollment in BIOL 189W is required. Enrollment is restricted to human biology majors.
Instructor
Lindsay Hinck, Martha Zuniga
Quarter offered
Fall, Winter, Spring, Summer
Writing-intensive course offered in conjunction with the health sciences internship. Weekly class meetings include academic guidance and mentoring as well as discussion of the mechanisms and conventions of academic writing about heath and health care. Students complete multiple writing assignments, culminating in a term paper in the format of a scholarly article. Enrollment is by application. Students interview with the health-sciences internship coordinator; applications are due one quarter in advance to the Health Care Sciences Internship Office. Prerequisite(s): satisfaction of the Entry Level Writing and Composition requirements. Previous or concurrent enrollment in course 189 is required. Enrollment is restricted to human biology majors.
Instructor
Lindsay Hinck, Martha Zuniga
Quarter offered
Fall, Winter, Spring, Summer
An individually supervised course, with emphasis on independent research, to culminate in a senior thesis. Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Provides for individual programs of study (a) by means other than the usual supervision in person, or (b) when the student is doing all or most of the coursework off campus. With permission of the department, may be repeated for credit, or two or three courses taken concurrently. Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Provides for two credits of independent field study (a) by means other than the usual supervision in person, or (b) when the student is doing all or most of the coursework off campus. Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Reading, discussion, written reports, and laboratory research on selected biological topics, using facilities normally available on campus. Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Two-credit Tutorial. Reading, discussion, written reports, and laboratory research on selected biological topics, using facilities normally available on campus. Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring