Graduate

ASTR 202 Astrophysics I

Survey of radiative processes of astrophysical importance from radio waves to gamma rays. The interaction of radiation with matter: radiative transfer, emission, and absorption. Thermal and non-thermal processes, including bremsstrahlung, synchrotron radiation, and Compton scattering. Radiation in plasmas. Enrollment is by permission of the instructor.

Credits

5

Instructor

Brant Robertson

ASTR 204 Astrophysics II

Explores how physical conditions in astrophysical objects can be diagnosed from their spectra. Discussion topics include how energy flows determine the thermal state of radiating objects and how the physics of radiative transfer can explain the emergent spectral characteristics of stars, accretion disks, Lyman-alpha clouds, and microwave background. (Formerly Astrophysical Flows.)

Credits

5

Instructor

Ruth Murray-Clay

Requirements

Enrollment is restricted to graduate students.

Quarter offered

Fall

ASTR 205 Introduction to Astronomical Research and Teaching

Lectures and seminar-style course intended to integrate new graduate students into the department; to introduce students to the research and interests of department faculty; and to expose graduate students to teaching skills and classroom techniques. (Formerly Introduction to Astronomical Research.)

Credits

5

Instructor

Graeme Smith

Requirements

Enrollment is restricted to graduate students.

Quarter offered

Fall

ASTR 214 Special Topics in Galactic and Extragalactic Astronomy

Survey of some principal areas of research on the origin and growth of cosmic structures and galaxies: the dark ages; 21cm tomography; first galaxies; first stars and seed black holes; reionization and chemical enrichment of the intergalactic medium; the assembly of massive galaxies; quasi-stellar sources; interactions of massive black holes with their environment; extragalactic background radiation; numerical simulations and the nature of the dark matter; the dark halo of the Milky Way.

Credits

5

Instructor

Alexie Leauthaud

Requirements

Enrollment is restricted to graduate students.

ASTR 215 Research Practicum for Astrophysics

Introduces graduate students to practical and efficient research methodology. Covers best practices in coding and code development, documentation of research, project management, preprint and journal article writing and submission, professional presentation preparation, and grant writing. Introduces more advanced techniques through experiential learning research projects developed in collaboration with the instructor. Prerequisite(s): ASTR 202, ASTR 204, ASTR 205, and ASTR 257. Students must take ASTR 215 from an instructor outside their Ph.D. specialty, and requires permission of the instructor to enroll.

Credits

5

Instructor

Brant Robertson

Quarter offered

Fall, Winter, Spring

ASTR 220A Stars and Planets I

Survey of stellar structure and evolution.Physical properties of stellar material. Convective and radiative energy transport. Stellar models and evolutionary tracks through all phases. Brown dwarfs and giant planets. Comparison with observations. (Formerly Stellar Structure and Evolution.)

Credits

5

Instructor

Ryan Foley

Requirements

Enrollment is restricted to graduate students.

Quarter offered

Winter

ASTR 222 Stars and Planets II

Theory and observations of protoplanetary disks. Origin and evolution of the solar nebula. Formation and evolution of the terrestrial planets and the giant planets. (Formerly Planetary Formation and Evolution.)

Credits

5

Instructor

Jonathan Fortney

Requirements

Enrollment is restricted to graduate students.

Quarter offered

Spring

ASTR 225 High-Energy Astrophysics

High-energy astrophysics and the final stages of stellar evolution: supernovae, binary stars, accretion disks, pulsars; extragalactic radio sources; active galactic nuclei; black holes. (Formerly Physics of Compact Objects)

Credits

5

ASTR 230 Diffuse Matter in Space

Fundamental physical theory of gaseous nebulae and the interstellar medium. Ionization, thermal balance, theory and observation of emission spectra. Interstellar absorption lines, extinction by interstellar dust. Ultraviolet, optical, infrared, and radio spectra of gaseous nebulae.

Credits

5

Instructor

Piero Madau

ASTR 233 Galaxies and Cosmology I

Advanced survey of topics in cosmology and galaxy formation. Appropriate for graduate students and undergraduates with a significant background in physics and astronomy. Topics include modern physical cosmology, curved space-times, observational tests of cosmology, the early universe, dark matter, the emergence of cosmic structure and the formation and evolution of galaxies. Enrollment is by permission of the instructor.

Credits

5

Instructor

Kevin Bundy

ASTR 234 Statistical Techniques in Astronomy

Introduces probability and statistics in data analysis with emphasis on astronomical applications. Topics include probability, Bayes' theorem, statistics, error analysis, correlation, hypothesis testing, parameter estimation, surveys, time-series analysis, surface distributions, and image processing. Students learn to identify the appropriate statistical technique to apply to an astronomical problem and develop a portfolio of analytic and computational techniques that they can apply to their own research.

Credits

5

Instructor

Andrew Skemer, Xavier Prochaska

Requirements

Enrollment is restricted to graduate students.

Quarter offered

Fall

ASTR 240A Galaxies and Cosmology II

Structure and evolutionary histories of nearby galaxies. Stellar populations, galactic dynamics, dark matter, galactic structure and mass distributions. Peculiar galaxies and starbursting galaxies. Structure and content of the Milky Way. Evolution of density perturbations in the early universe. Hierarchical clustering model for galaxy formation and evolution. (Formerly Galactic and Extragalactic Stellar Systems.)

Credits

5

Instructor

Leathaud Alexie

Quarter offered

Fall

ASTR 257 Observational Astronomy

 

Introduction to observational astronomy with a multi-day field trip to Lick Observatory. Students learn the fundamentals of planning and executing observational projects, manipulating and interpreting raw astronomical data with standard tools and algorithms, presenting their observations in a standard written format that is appropriate for publication, and observatory operations and career paths.

Credits

5

Instructor

A. Skemer

Requirements

Designed for graduate students; available to qualified undergraduate astrophysics majors by instructor permission.

ASTR 260 Instrumentation for Astronomy

An introduction to astronomical instrumentation for infrared and visible wavelengths. Topics include instrument requirements imposed by dust, atmosphere, and telescope; optical, mechanical, and structural design principles and components; electronic and software instrument control. Imaging cameras and spectrographs are described. Offered in alternate academic years.

Credits

5

Instructor

Constance Rockosi

Requirements

Enrollment is restricted to graduate students.

ASTR 289 Adaptive Optics and Its Application

Introduction to adaptive optics and its astronomical applications. Topics include effects of atmospheric turbulence on astronomical images, basic principles of feedback control, wavefront sensors and correctors, laser guide stars, how to analyze and optimize performance of adaptive optics systems, and techniques for utilizing current and future systems for astronomical observations.

Credits

5

Instructor

Claire Max

Requirements

Enrollment is restricted to graduate students.

ASTR 292 Seminar

Seminar attended by faculty, graduate students, and upper-division undergraduate students.

Credits

0

Quarter offered

Fall, Winter, Spring

ASTR 293 Current Literature in Astrophysics

Training for following daily progress in astrophysical research to keep pace with the rapidly evolving scientific field. Students learn how to select and read interesting papers (that span a wide range of topics) efficiently and how to summarize their key results. Students have an opportunity to practice presentation skills in an informal group discussion setting.

Credits

2

Instructor

The Staff

Requirements

Enrollment is restricted to graduate students.

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

ASTR 294 Pedagogy of Astrophysical Research

Teaches fundamental skills for scientific research in the context of coursework. Course has two branches: an instructor-intensive hands-on research training in an area beyond the thesis; and an instructor-led literature review. The research branch involves short, quarter-long projects with faculty that are designed to introduce skills and concepts broadly applicable to research but within a focused science domain. The literature branch involves short review projects for building expertise in evaluating literature, writing papers, refereeing articles, and reviewing grants and proposals.

Credits

5

Instructor

Brant Robertson

Requirements

Enrollment is restricted to astronomy and astrophysics graduate students.

Quarter offered

Fall, Winter, Spring

ASTR 297A Independent Study

Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.

Credits

5

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

ASTR 297B Independent Study

Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.

Credits

10

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

ASTR 297C Independent Study

Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.

Credits

15

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

ASTR 299A Thesis Research

Credits

5

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

ASTR 299B Thesis Research

Credits

10

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

ASTR 299C Thesis Research

Credits

15

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring