;

Data Science Designated Emphasis

Introduction

The Data Science Designated Emphasis is a non-degree program housed in the Department of Statistics of the Baskin School of Engineering at the University of California, Santa Cruz. The program aims to provide students from a wide swath of graduate degree programs across campus with the training required to apply state-of-the-art methods and tools from data wrangling, data visualization, statistical data analysis, machine learning, and artificial intelligence to their own research.

Requirements

Committee Composition and Departmental Approvals

Include one of the Data Science program faculty members that is not a member of their home department in their qualifying exam and dissertation committees. This faculty member is the “DS adviser” for purposes of the designated emphasis. This faculty member must be identified at the time the student applies to the program. A list of current program faculty can be found at the program faculty website the program faculty website.

Course Requirements

Required Courses

All students in the designated emphasis are required to complete 16 credits in mandatory courses covering the following topics:

Data Wrangling and Visualization
STAT 266A
/CSE 266A
Data Visualization and Statistical Programming in R

3

STAT 266C
/CSE 266C
Introduction to Data Wrangling

3

Statistical Data Analysis
STAT 204Introduction to Statistical Data Analysis

5

Machine Learning
CSE 242Machine Learning

5

If one of the required courses above is also required by the main program of affiliation of the student, it must be substituted with a valid elective course (see below).

Elective Courses

In addition to completing all required courses, all students must complete at least one five-credit elective from the list below.

 
Applied Mathematics
AM 229Convex Optimization

5

AM 230Numerical Optimization

5

AM 250An Introduction to High Performance Computing

5

Astonomy and Astrophysics
ASTR 234Statistical Techniques in Astronomy

5

Computational Media
CMPM 243Social Computing Research: Design, Algorithms, and Incentives

5

CMPM 268Immersive Analytics

5

Computer Science and Engineering
CSE 243Data Mining

5

CSE 248Foundations of Data Science

5

CSE 261Advanced Visualization

5

Economics
ECON 211AAdvanced Econometrics I

5

ECON 211BAdvanced Econometrics II

5

ECON 211CAdvanced Econometrics III

5

Electrical and Computer Engineering
ECE 237Image Processing and Reconstruction

5

ECE 250Digital Signal Processing

5

ECE 253
/CSE 208
Introduction to Information Theory

5

ECE 256Statistical Signal Processing

5

Environmental Studies
ENVS 215AGeographic Information Systems and Environmental Applications

5

ENVS 215BIntermediate Geographic Information Systems

5

Ocean Sciences
OCEA 260
/EART 260
Introductory Data Analysis in the Ocean and Earth Sciences

5

OCEA 267Applied Environmental Time Series Analysis

5

Psychology
PSYC 204Quantitative Data Analysis

5

PSYC 205Categorical Data Analysis

5

PSYC 214AMultivariate Techniques for Psychology

5

PSYC 214BAdvanced Multivariate Techniques for Psychology

5

Statistics
STAT 203Introduction to Probability Theory

5

STAT 205Introduction to Classical Statistical Learning

5

STAT 206Applied Bayesian Statistics

5

STAT 207Intermediate Bayesian Statistical Modeling

5

STAT 208Linear Statistical Models

5

STAT 209Generalized Linear Models

5

STAT 222Bayesian Nonparametric Methods

5

STAT 223Time Series Analysis

5

STAT 224Bayesian Survival Analysis and Clinical Design

5

STAT 225Multivariate Statistical Methods

5

STAT 226Spatial Statistics

5

STAT 229Advanced Bayesian Computation

5

Students might need to take additional electives to substitute for required courses if any of them is also a required course for their main program of affiliation. In addition, to emphasize the interdisciplinary nature of the program, students completing a graduate program housed in the Statistics or Computer Science and Engineering departments must take the elective course outside their home department (however, cross-listed courses that include their home department are acceptable electives for these students).  Students in graduate programs housed in other departments are free to take any elective in the list, except for courses that are required by their main program of affiliation (as outlined above).

In rare circumstances, courses not included in the list above could be considered electives with the approval of the Executive Committee.

Speaker Series Attendance

All students in the designated emphasis are required to register for one-quarter of the below class, which consists of a weekly speaker series featuring external speakers on various topics related to data science methods and applications.

STAT 280BSeminars in Statistics

2