Graduate

PHYS202 Introduction to Teaching in Physics

A practical introduction to working as a teaching assistant for undergraduate classes in physics, including both teaching laboratories and running discussion sections. The training includes topics in classroom climate and inclusivity, active learning, motivating students, office hours, information technology, grading, communication with the instructor, and handling difficult situations. Students engaged in teaching in the same quarter are encouraged to apply the lessons in their classes and return with feedback to be discussed. Required course for first year graduate students.

Credits

1

Requirements

Enrollment is restricted to graduate students.

Quarter offered

Fall

PHYS205 Introduction to Research in Physics

Introduction to current research opportunities at UCSC for graduate students. Topics include: elementary particle physics, condensed matter and solid state physics, high energy astrophysics, biophysics, and cosmology. Selected topics related to career development may also be included.

Credits

2

Instructor

M. Dine

Requirements

Enrollment is restricted to graduate students or by permission of instructor.

Quarter offered

Winter

PHYS210 Classical Mechanics

Generalized coordinates, calculus of variations, Lagrange's equations with constraints, Hamilton's equations, applications to particle dynamics including charged particles in an electromagnetic field, applications to continuum mechanics including fluids and electromagnetic fields, introduction to nonlinear dynamics.

Credits

5

Instructor

Sriram Shastry

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Fall

PHYS212 Electromagnetism I

Electrostatics and magnetostatics, boundary value problems with spherical and cylindrical symmetry, multipole expansion, dielectric media, magnetic materials, electromagnetic properties of materials, time-varying electromagnetic fields, Maxwell's equations, conservation laws, plane electromagnetic waves and propagation, waveguides and resonant cavities.

Credits

5

Instructor

Onuttom Narayan

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Fall

PHYS214 Electromagnetism II

Lorentz covariant formulation of Maxwell's equations, dynamics of relativistic charged particles and electromagnetic fields, scattering and diffraction. Topics in classical radiation theory: simple radiating systems radiation by moving charges, multipole radiation, synchrotron radiation, Cerenkov radiation, bremsstrahlung and radiation damping.

Credits

5

Instructor

O. Narayan

Requirements

Prerequisite(s): PHYS 212. Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Winter

PHYS215 Introduction to Non-Relativistic Quantum Mechanics

Mathematic introduction; fundamental postulates; time evolution operator, including the Heisenberg and Schrodinger pictures; simple harmonic oscillator and coherent states; one-dimensional scattering theory, including S-matrix resonant phenomena; two-state systems, including magnetic resonance; symmetries, including rotation group, spin, and the Wigner-Eckart theorem; rotationally invariant problems, including the hydrogen atom; gauge invariance, including Landau levels; introduction to path integral.

Credits

5

Instructor

S. Shastry

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Winter

PHYS216 Advanced Topics in Non-Relativistic Quantum Mechanics

Approximate methods: time-independent perturbation theory, variational principle, time-dependent perturbation theory; three-dimensional scattering theory; identical particles; permutation symmetry and exchange degeneracy, anti-symmetric and symmetric states; many-body systems and self-consistent fields: variational calculations; second quantized formalism, including Fock spaces/number representation, field operators and Green functions; applications: electron gas; quantization of the electromagnetic field and interaction of radiation with matter: absorption, emission, scattering, photoelectric effect, and lifetimes.

Credits

5

Instructor

O. Narayan

Requirements

Prerequisite(s): PHYS 215. Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Spring

PHYS217 Quantum Field Theory I

Lorentz invariance in quantum theory, Dirac and Klein-Gordon equations, the relativistic hydrogen atom, Green functions and canonical approach to field theory, quantum electrodynamics, Feynman diagrams for scattering processes, symmetries and Ward identities. Students learn to perform calculations of scattering and decay of particles in field theory.

Credits

5

Instructor

S. Gori

Requirements

Prerequisite(s): PHYS 216 or exception by permission of the instructor. Enrollment is restricted to graduate students or by permission of the instructor.

Quarter offered

Fall

PHYS218 Quantum Field Theory II

Path integral approach to quantum field theory. Theory of renormalization and the renormalization group, introduction to gauge theories and spontaneously broken field theories. Applications to the standard model of strong, weak, and electromagnetic interactions.

Credits

5

Instructor

W. Altmannshofer

Requirements

Prerequisite(s): PHYS 217. Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Winter

PHYS219 Statistical Physics

The basic laws of thermodynamics, entropy, thermodynamic potentials, kinetic theory of gases, quantum and classical statistical mechanics, virial expansion, linear response theory. Applications in condensed matter physics.

Credits

5

Instructor

Sergey Syzranov

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Spring

PHYS220 Theory of Many-Body Physics

Finite temperature Green functions, Feynman diagrams, Dyson equation, linked cluster theorem, Kubo formula for electrical conductivity, electron gas, random phase approximation, Fermi surfaces, Landau fermi liquid theory, electron phonon coupling, Migdal's theorem, superconductivity.

Credits

5

Requirements

Prerequisite(s): PHYS 216 and PHYS 219. Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS221A Introduction to Particle Physics I

First quarter of a two-quarter graduate level introduction to particle physics, including the following topics: discrete symmetries, quark model, particle classification, masses and magnetic moments, passage of radiation through matter, detector technology, accelerator physics, Feynman calculus, and electron-positron annihilation.

Credits

5

Instructor

Michael Hance

Requirements

Prerequisite(s): PHYS 217 or concurrent enrollment. Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Fall

PHYS221B Introduction to Particle Physics II

Second quarter of a two-quarter graduate level introduction to particle physics, including the following topics: nucleon structure, weak interactions and the Standard Model, neutrino oscillation, quantum chromodynamics, CP violation, and a tour of the Stanford Linear Accelerator Center.

Credits

5

Instructor

Jason Nielsen

Requirements

Prerequisite(s): PHYS 221A; PHYS 217 or concurrent enrollment. Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Winter

PHYS222 Quantum Field Theory III

Focuses on the theoretical underpinnings of the standard model, including the spontaneous symmetry breaking, the renormalization group, the operator product expansion, and precision tests of the Standard Model.

Credits

5

Instructor

H. Haber

Requirements

Prerequisite(s): PHYS 218 and PHYS 221B. Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Spring

PHYS224 Particle Astrophysics and Cosmology

Particle physics and cosmology of the very early universe: thermodynamics and thermal history; out-of-equilibrium phenomena (e.g., WIMPs freeze-out, neutrino cosmology, Big Bang nucleosynthesis, recombination); baryogenesis; inflation; topological defects. High-energy astrophysical processes: overview of cosmic ray and gamma ray astrophysics; radiative and inelastic processes; astroparticle acceleration mechanisms; magnetic fields and cosmic ray transport; radiation-energy density of the universe; ultrahigh-energy cosmic rays; dark-matter models; and detection techniques. (Formerly Origin and Evolution of the Universe.)

Credits

5

Cross Listed Courses

ASTR 224

Instructor

A. Aguirre

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Quarter offered

Spring

PHYS226 General Relativity

Develops the formalism of Einstein's general relativity, including solar system tests, gravitational waves, cosmology, and black holes.

Credits

5

Cross Listed Courses

ASTR 226

Instructor

Anthony Aguirre

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS231 Introduction to Condensed Matter Physics

Crystal structures, reciprocal lattice, crystal bonding, phonons (including specific heat), band theory of electrons, free electron model, electron-electron and electron-phonon interactions, transport theory.

Credits

5

Instructor

Arthur Ramirez

Requirements

Prerequisite(s): PHYS 216 or equivalent course or by permission of the instructor. Enrollment is restricted to graduate students only, or by permission of instructor.

Quarter offered

Fall

PHYS232 Condensed Matter Physics

Magnetism (para, ferro, anti-ferro, ferri), spin waves, superconductivity, introduction to semiconductors.

Credits

5

Instructor

Sergey Syzranov

Requirements

Prerequisite(s): PHYS 231. Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS233 Advanced Condensed Matter Physics

A special topics course which includes areas of current interest in condensed matter physics. Possible topics include superconductivity, phase transitions, renormalization group, disordered systems, surface phenomena, magnetic resonance, and spectroscopy.

Credits

5

Instructor

Sriram Shastry

Requirements

Prerequisite(s): PHYS 231. Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS234 Soft Condensed Matter Physics

A selection of topics from: liquid crystals, biological systems, renormalization group and critical phenomena, stochastic processes, Langevin and Fokker Planck equations, hydrodynamic theories, granular materials, glasses, quasicrystals.

Credits

5

Instructor

Onuttom Narayan, Allan Young

Requirements

Prerequisite(s): PHYS 219 and PHYS 232. Enrollment is restricted to graduate students.

PHYS240 Polymer Physics

Statistical properties polymers. Scaling behavior, fractal dimensions. Random walks, self avoidance. Single chains and concentrated solutions. Dynamics and topological effects in melts. Polymer networks. Sol-gel transitions. Polymer blends. Application to biological systems. Computer simulations demonstrating much of the above. Students cannot receive credit for this course and course 120.

Credits

5

Instructor

Joshua Deutsch

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS242 Computational Physics

This course will apply efficient numerical methods to the solution of problems in the physical sciences which are otherwise intractable. Examples will be drawn from classical mechanics, quantum mechanics, statistical mechanics, and electrodynamics. Students will apply a high-level programming language such as Mathematica to the solution of physical problems and will develop appropriate error and stability estimates.

Credits

5

Instructor

Jason Nielsen

Requirements

Prerequisite(s): basic programming experience in C or Fortran. No previous experience with Mathematica is required. Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS251 Group Theory and Modern Physics

Finite and continuous groups, group representation theory, the symmetric group and Young tableaux, Lie groups and Lie algebras, irreducible representations of Lie algebras by tensor methods, unitary groups in particle physics, Dynkin diagrams, Lorentz and Poincaré groups.

Credits

5

Instructor

Howard Haber

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

PHYS290 Special Topics

A series of lectures on various topics of current interest in physics at UC Santa Cruz.

Credits

5

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Repeatable for credit

Yes

PHYS291A Cosmology

Intensive research seminar on cosmology and related topics in astrophysics: nature of dark matter; origin of cosmological inhomogeneities and other initial conditions of the big bang; origin and evolution of galaxies and large scale structure in the universe.

Credits

2

Instructor

Joel Primack

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Repeatable for credit

Yes

PHYS291B X-rays and Magnetism

Research seminar on x-ray studies of the properties and behavior of magnetic materials. Topics include: the underlying physical interactions, experimental techniques, and selected examples from current research. This course includes a visit to the Advanced Light Source in Berkeley.

Credits

2

Instructor

Peter Fischer

Requirements

Enrollment is restricted to graduate students.

Repeatable for credit

Yes

PHYS291C Developments in Theoretical Particle Physics

Seminar on the current literature of elementary particle physics, ranging from strong and weak interaction phenomenology to Higgs physics, supersymmetry, and superstring theory. Students may present their own research results.

Credits

2

Instructor

H. Haber, M. Dine, S. Gori, W. Altmannshofer

Requirements

Prerequisite(s): PHYS 218. Enrollment is restricted to graduate students.

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

PHYS291D Experimental High-Energy Collider Physics

Seminar on current results in experimental high-energy particle physics. Topics follow recently published results, including design of experiments, development of particle detector technology, and experimental results from new particle searches, quantum chromodynamics, and properties of heavy flavor quarks.

Credits

2

Instructor

Jason Nielsen

Requirements

Enrollment is restricted to graduate students.

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

PHYS291E Applied Physics

Intensive research seminar on applied physics and related topics in materials science, including semiconductor devices, optoelectronics, molecular electronics, magnetic materials, nanotechnology, biosensors, and medical physics. Students may present their own research results.

Credits

2

Instructor

Sue Carter

Requirements

Enrollment is restricted to graduate students.

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

PHYS291F Experimental High-Energy and Particle Astrophysics Seminar

Survey of current research in experimental high-energy and particle astrophysics. Recent observations and development in instrumentation for x-rays, gamma rays, and neutrinos, and evidence for dark matter and other new particles. Students lead discussion of recent papers.

Credits

2

Instructor

David Smith

Requirements

Enrollment is restricted to graduate students.

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

PHYS291G Condensed Matter Physics Research Seminar

Weekly seminar series covering topics of current interest in condensed matter physics. Local and external speakers discuss their work.

Credits

2

Requirements

Enrollment is restricted to graduate students.

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

PHYS292 Seminar

Weekly seminar attended by faculty and graduate students. Directed at all physics graduate students who have not taken and passed the qualifying examination for the Ph.D. program.

Credits

0

Instructor

M. Dine

Requirements

Enrollment is restricted to graduate students only, except by permission of instructor.

Repeatable for credit

Yes

Quarter offered

Fall, Winter, Spring

PHYS292F Seminar

Seminar

Credits

2

PHYS297A Independent Study

Enrollment restricted to graduate students only, except by permission of instructor.

Credits

5

Repeatable for credit

Yes

PHYS297B Independent Study

Enrollment restricted to graduate students only, except by permission of instructor.

Credits

10

Repeatable for credit

Yes

PHYS297C Independent Study

Enrollment restricted to graduate students only, except by permission of instructor.

Credits

15

Repeatable for credit

Yes

PHYS298 Theoretical and Experimental Research Project

Enrollment restricted to graduate students only, except by permission of instructor.

Credits

5

Quarter offered

Fall, Winter, Spring

PHYS299A Thesis Research

Enrollment restricted to graduate students only, except by permission of instructor.

Credits

5

Repeatable for credit

Yes

PHYS299B Thesis Research

Enrollment restricted to graduate students only, except by permission of instructor.

Credits

10

Repeatable for credit

Yes

PHYS299C Thesis Research

Enrollment restricted to graduate students only, except by permission of instructor.

Credits

15

Repeatable for credit

Yes