Information and Policies
Introduction
The electrical engineering B.S. program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.
Students can pursue either of two concentrations, Electronics/Optics or Communications, Signals and Systems.
Program Learning Outcomes
Program Educational Objectives:
Program Educational Objectives (PEOs) are based on the needs of the Electrical Engineering program constituents. They describe what graduates are expected to attain within a few years after graduation.
The PEOs for the Electrical Engineering program at the University of California, Santa Cruz, are as follows:
- Advanced Learning and Professional Development: Achieve a high quality, professional approach to engineering through a desire for advanced education, lifelong learning and participation in the professional engineering community.
- Adaptation to Technological Change: Enjoy a successful professional career in a world with rapid technological change by having a sound foundation in the fundamental electrical engineering theory, design and basic science upon which future technology will be based.
- Skills for Initial and Continued Employment Success: Demonstrate job-relevant electrical engineering skills through theoretical and practical competence in hardware, software, and programming aspects of electrical engineering, as well as independence in thought and action.
- Leadership, Teamwork and Entrepreneurial Skills: Achieve a high level of individual creativity for personal achievement as well as the interpersonal, communications and responsibility skills for creating an effective team project environment, including an ability to apply engineering competence in both research and product oriented settings.
- Ethics and Societal Issues: Practice a high standard of professional ethics and have a positive impact on the social and environmental aspects of engineering design and implementation.
Student Outcomes:
Upon graduation, students completing the Electrical Engineering B.S. program shall have an ability to:
-
identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics;
-
apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors;
-
communicate effectively with a range of audiences;
-
recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts;
-
function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
-
develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions; and
-
acquire and apply new knowledge as needed, using appropriate learning strategies.
Academic Advising for the Program
The Baskin Engineering undergraduate advising office offers general advising for prospective and declared undergraduates majoring in Baskin Engineering programs. The office handles major declarations, transfer credits, course substitutions, articulations, and degree certifications.
Transfer students should also refer to the Transfer Information and Policy section.
Baskin Engineering Building, Room 225
bsoeadvising@ucsc.edu
(831) 459-5840
Getting Started in the Major: Frosh
For the first two years, all electrical engineering students are expected to take a basic set of lower-division mathematics, physical science, and engineering courses. After the first two years, electrical engineering students focus on topics within the discipline and specialize in one of two options: electronics/optics, including digital and analog circuits and devices, VLSI design, optoelectronics, electromagnetics, power engineering, and biomedical device engineering; or communications, signals, systems, and control, including optical, wireless communication, signal and image processing, networks signal processing, instrumentation, and control.
This major is highly course intensive and sequential; students who intend to pursue this major must begin taking classes for the major in their first quarter at UC Santa Cruz.
Math placement is required for one or more of the foundational courses for this major. For more information, please review the Math Placement website.
Transfer Information and Policy
Transfer students who want to pursue the electrical engineering major, must have applied and been admitted to UC Santa Cruz as a proposed electrical engineering major.
Transfer Admission Screening Policy
The following courses or their equivalents are required prior to transfer, by the end of spring term for students planning to enter in the fall.
First-year calculus
Both:
MATH 19A | Calculus for Science, Engineering, and Mathematics | 5 |
MATH 19B | Calculus for Science, Engineering, and Mathematics | 5 |
Linear algebra
One of:
AM 10 | Mathematical Methods for Engineers I | 5 |
MATH 21 | Linear Algebra | 5 |
Differential equations
One of:
AM 20 | Mathematical Methods for Engineers II | 5 |
MATH 24 | Ordinary Differential Equations | 5 |
Calculus-based physics
A year of calculus-based physics courses accepted as equivalent to:
PHYS 5A | Introduction to Physics I | 5 |
PHYS 5L | Introduction to Physics I Laboratory | 1 |
PHYS 5B | Introduction to Physics II | 5 |
PHYS 5M | Introduction to Physics II Laboratory | 1 |
PHYS 5C | Introduction to Physics III | 5 |
PHYS 5N | Introduction to Physics Laboratory III | 1 |
Cumulative GPA
A minimum GPA of 2.8 must be obtained in the courses listed above.
Additionally
In addition, the following courses are recommended prior to transfer to ensure timely graduation.
CSE 12 | Computer Systems and Assembly Language and Lab | 7 |
MATH 23A | Vector Calculus | 5 |
and one of the following courses:
General Education Options
Prospective students are encouraged to prioritize required and recommended major preparation prior to transfer, and may additionally complete courses that articulate to UC Santa Cruz general education requirements as time allows.
Getting Started in the Major: Transfer Students
Transfer students should declare their major in their first quarter at UC Santa Cruz. Instructions for declaring a major in Baskin Engineering are on the Declare Your Major page.
Major Qualification Policy and Declaration Process
Major Qualification
Transfer students should refer to the Transfer Admission Screening requirements.
Admission to the electrical engineering major is selective. In order to be admitted into the electrical engineering major students must be listed as a proposed major within Baskin Engineering, and complete all the foundation courses listed below with a GPA of 2.8 or better.
Please refer to the Baskin Engineering "Proposed Major Retention" and its "Declaring a Baskin Engineering Major" sections in the catalog or Baskin Engineering's information on declaring a major for more information.
Both of the following
MATH 19A | Calculus for Science, Engineering, and Mathematics | 5 |
MATH 19B | Calculus for Science, Engineering, and Mathematics | 5 |
Plus one of the following courses
AM 10 | Mathematical Methods for Engineers I | 5 |
MATH 21 | Linear Algebra | 5 |
Plus one of the following courses
AM 20 | Mathematical Methods for Engineers II | 5 |
MATH 24 | Ordinary Differential Equations | 5 |
Plus all the following courses
PHYS 5A | Introduction to Physics I | 5 |
PHYS 5L | Introduction to Physics I Laboratory | 1 |
PHYS 5B | Introduction to Physics II | 5 |
PHYS 5M | Introduction to Physics II Laboratory | 1 |
PHYS 5C | Introduction to Physics III | 5 |
PHYS 5N | Introduction to Physics Laboratory III | 1 |
Additionally
Students must complete an "Introduction to Engineering" class, chosen from the following courses:
ECE 80T | Modern Electronic Technology and How It Works | 5 |
CSE 80C | Starting a New Technology Company | 5 |
Appeal Process
Students who are informed that they are not eligible to declare may appeal this decision by submitting a letter to the undergraduate director within 15 days from the date the notification was mailed. Within 15 days of receipt of the appeal, the department will notify the student, the college, and the Office of the Registrar of the decision.
If you have further questions concerning the appeal process, please contact the Undergraduate Advising Office at (831) 459-5840 or email bsoeadvising@ucsc.edu.
More information regarding the appeal process can be found on the Baskin Engineering Major Declaration Appeal Process page.
How to Declare a Major
Instructions for declaring a major in Baskin Engineering are on the BE Undergraduate Advising Declare your Major page.
Letter Grade Policy
The Electrical and Computer Engineering Department requires letter grading for all courses applied toward the Electrical Engineering Bachelor of Science (B.S.) degree.
Course Substitution Policy
Please refer to the Baskin Engineering section of the catalog for the policy regarding course substitutions.
Honors
Electrical engineering majors are considered for “Honors in the Major” and “Highest Honors in the Major” based on the GPA and on results of undergraduate research and other significant contributions to Baskin Engineering. Students with a GPA of 3.7 or higher receive highest honors. Students with a GPA of 3.3 or higher but less than 3.7, receive honors. A student meeting the GPA requirement for highest honors or honors may not receive honors if a student has been found guilty of academic misconduct. Students with particularly significant accomplishments in undergraduate research or contributions to Baskin Engineering may be considered with a lower GPA. Electrical engineering juniors and seniors may also be eligible for election to the UC Santa Cruz chapter of Tau Beta Pi, the national engineering honor society founded in 1885.
Materials Fee and Miscellaneous Fees
Please see the section on fees under Baskin Engineering.
Requirements and Planners
Course Requirements (all concentrations)
Lower-Division Courses
Students gain a solid foundation in calculus, engineering mathematics, physics, computer science, and computer engineering during their first two years. Majors must complete the following 13 lower-division courses (including corresponding laboratories). These courses form part of the prerequisite sequence and should be completed during the first two years at UC Santa Cruz. The requirements are rigorous; students must be prepared to begin these courses early in their studies.
Electrical and Computer Engineering
ECE 80T | Modern Electronic Technology and How It Works | 5 |
This course is waived for transfer students.
Computer Science and Engineering
All of the following courses:
CSE 12 | Computer Systems and Assembly Language and Lab | 7 |
ECE 13 | Computer Systems and C Programming | 7 |
Mathematics
All of the following:
MATH 19A | Calculus for Science, Engineering, and Mathematics | 5 |
MATH 19B | Calculus for Science, Engineering, and Mathematics | 5 |
MATH 23A | Vector Calculus | 5 |
MATH 23B | Vector Calculus | 5 |
Applied Mathematics
One of the following
AM 10 | Mathematical Methods for Engineers I | 5 |
MATH 21 | Linear Algebra | 5 |
Plus one of the following
AM 20 | Mathematical Methods for Engineers II | 5 |
MATH 24 | Ordinary Differential Equations | 5 |
Physics
All of the following:
PHYS 5A | Introduction to Physics I | 5 |
PHYS 5L | Introduction to Physics I Laboratory | 1 |
PHYS 5B | Introduction to Physics II | 5 |
PHYS 5M | Introduction to Physics II Laboratory | 1 |
PHYS 5C | Introduction to Physics III | 5 |
PHYS 5N | Introduction to Physics Laboratory III | 1 |
PHYS 5D | Introduction to Physics IV | 5 |
Upper-Division Courses
Fifteen upper-division courses along with associated 1- or 2-credit laboratories are required for the major. The course requirements include both depth and breadth, technical writing, and a comprehensive capstone design project.
All students are required to take the following eight upper-division courses, with associated laboratories.
Electrical and Computer Engineering
ECE 101 | Introduction to Electronic Circuits | 5 |
ECE 101L | Introduction to Electronic Circuits Laboratory | 2 |
ECE 102 | Properties of Materials | 5 |
ECE 102L | Properties of Materials Laboratory | 2 |
ECE 103 | Signals and Systems | 5 |
ECE 103L | Signals and Systems Laboratory | 2 |
ECE 135 | Electromagnetic Fields and Waves | 5 |
ECE 135L | Electromagnetic Fields and Waves Laboratory | 2 |
ECE 151 | Communications Systems | 5 |
ECE 171 | Analog Electronics | 5 |
ECE 171L | Analog Electronics Laboratory | 2 |
Computer Science and Engineering
Statistics
STAT 131 | Introduction to Probability Theory | 5 |
Lecture/lab combinations count as one course.
Electives
In addition to completing the courses required for both concentrations, electrical engineering majors must complete four elective courses chosen from the lists below. Students pursuing the Electronics/Optics concentration must choose at least three courses from the Electronics/Optics courses listed below. Students pursuing the Communications, Signals and Systems concentration must choose at least three courses from the Communication and Signals courses listed below.
Certain graduate-level courses as well as those courses taught in conjunction with graduate courses may also be used to fulfill an elective requirement as listed below. No course may be counted twice.
Design Elective: One of the four concentration courses chosen must include at least one of the following design electives ECE 118, ECE 157 & ECE 157L, ECE 121, and ECE 173. This course must be taken before the first capstone course ECE 129A.
Electronics/Optics Concentration Courses
Electrical and Computer Engineering
ECE 104 | Bioelectronics | 5 |
ECE 115 | Introduction to Solid Mechanics | 5 |
ECE 118 | Introduction to Mechatronics | 10 |
ECE 121 | Microcontroller System Design | 7 |
ECE 130 | Introduction to Optoelectronics and Photonics | 5 |
ECE 130L | Introduction to Optoelectronics Laboratory | 1 |
ECE 230 | Optical Fiber Communication | 5 |
ECE 136 | Engineering Electromagnetics | 5 |
ECE 141 | Feedback Control Systems | 5 |
ECE 241 | Introduction to Feedback Control Systems | 5 |
ECE 157 | RF Hardware Design | 5 |
ECE 157L | RF Hardware Design Laboratory | 2 |
ECE 167 | Sensing and Sensor Technologies | 7 |
ECE 172 | Advanced Analog Circuits | 5 |
ECE 221 | Advanced Analog Integrated Circuits | 5 |
ECE 173 | High-Speed Digital Design | 7 |
ECE 175 | Energy Generation and Control | 5 |
ECE 175L | Energy Generation and Control Laboratory | 2 |
ECE 176 | Energy Conservation and Control | 5 |
ECE 176L | Energy Conversion and Control Laboratory | 2 |
ECE 177 | Power Electronics | 5 |
ECE 177L | Power Electronics Laboratory | 2 |
ECE 178 | Device Electronics | 5 |
ECE 180J | Advanced Renewable Energy Sources, Storage, and Smart Grids | 5 |
ECE 201 | Introduction to Nanotechnology | 5 |
ECE 203 | Nanocharacterization of Materials | 5 |
ECE 231 | Optical Electronics | 5 |
Lecture/lab combinations count as one course.
(ECE 130 and ECE 230, ECE 141 and ECE 241, and ECE 172 and ECE 221 are undergraduate and graduate courses taught in conjunction, and only one can be taken for this program.)
Communications, Signals, Systems Concentration Courses
Electrical and Computer Engineering
ECE 118 | Introduction to Mechatronics | 10 |
ECE 130 | Introduction to Optoelectronics and Photonics | 5 |
ECE 130L | Introduction to Optoelectronics Laboratory | 1 |
ECE 230 | Optical Fiber Communication | 5 |
ECE 136 | Engineering Electromagnetics | 5 |
ECE 141 | Feedback Control Systems | 5 |
ECE 241 | Introduction to Feedback Control Systems | 5 |
ECE 152 | Introduction to Wireless Communications | 5 |
ECE 252 | Wireless Communications | 5 |
ECE 153 | Digital Signal Processing | 5 |
ECE 250 | Digital Signal Processing | 5 |
ECE 237 | Image Processing and Reconstruction | 5 |
ECE 251 | Principles of Digital Communications | 5 |
ECE 253
/CSE 208
| Introduction to Information Theory | 5 |
ECE 255 | Error Control Coding | 5 |
ECE 256 | Statistical Signal Processing | 5 |
Computer Science and Engineering
CSE 150 | Introduction to Computer Networks | 7 |
The senior-year curriculum enables students to pursue independent study with a faculty member. Electrical engineering students are encouraged to take advantage of the opportunity to work within a faculty member’s research group as part of their educational experience. Internship programs with local industry are also available.
Disciplinary Communication (DC) Requirement
Students in all majors must satisfy that major's upper-division Disciplinary Communication (DC) requirement. The DC requirement is satisfied by completing the senior capstone course sequence:
Either these three courses:
Or these two courses:
10 credits for the senior thesis course, ECE 195, must be completed for this option.
Comprehensive Requirement
The senior comprehensive requirement for electrical engineering majors is in two parts: a project course and assessment options.
Project Course
These senior-level courses encompass an in-depth project, including analysis, design, testing, and documentation, requiring students to call upon knowledge acquired throughout their undergraduate studies. Students must complete one capstone design course that spans three quarters. Current course choices include the following:
Or complete the following courses:
10 credits for the senior thesis course, ECE 195, must be completed for this option.
Outcomes Assessment Options
The Electrical and Computer Engineering Department requires an outcomes assessment. All students are required to complete an exit survey and meet with a faculty member for an exit interview. The specifics of the outcomes assessment may change from year to year; for this catalog year, students must also complete one of the following options:
- maintenance of a 2.5 grade point average in all required and elective courses for the major; or
- senior thesis submission; or
- portfolio review.
Portfolios must include the following:
- project report(s)
- a one- or two-page overview of the student’s contribution to the project(s);
- a two-page essay concerning the relationship of engineering to society (specific topics will be provided by the Electrical and Computer Engineering Department).
The portfolios must be submitted electronically at least seven days before the end of the instruction in the quarter of graduation. Portfolios will not be returned.
Planners
The tables below are for informational purposes and do not reflect all university, general education, and credit requirements. See Undergraduate Graduation Requirements for more information.
The following is a sample academic plan for incoming first-year students. Students who are unable to follow this planner should consult with ECE advisors for alternatives. Transfer students should seek advisement as their plans will vary depending on their lower-division courses.
Plan for Entering Frosh
* Students with no prior programming will take CSE 20 before CSE 12. Students with a prior programming course, AP credit, or clearing the “Test-out” bar will start with CSE 12.
Three of the four electives must be taken in the student’s concentration.
In addition to the specific courses shown in the planner above, a student must complete courses satisfying the
CC, ER, IM, TA and PE general education requirements.
Plan for Junior Transfer Students*
*This planner assumes that transfer students have completed all of their lower-division courses except two out of the three courses PHYS 5D, MATH 23B, and ECE 13 prior to attending UC Santa Cruz. Transfer students are encouraged to minimally complete ECE 13 before entering UCSC or during the summer quarter preceding their entry to UCSC.
Three of the four electives must be taken in the student’s concentration.
Curriculum charts for all BE majors are available at the Baskin Engineering undergraduate advising Major Curriculum Charts page.
Additional information about this program can be found on the department’s website.